Document Title	M121GNX2 R1 Product Information			Page No.	1/31
Document No.		Issue date	2015/01/30	Revision	00

Product Information

To:

Product Name: M121GNX2 R1

Document Issue Date: 2015/01/30

Customer	InfoVision Optoelectronics
<u>SIGNATURE</u>	SIGNATURE REVIEWED BY CQM
	PREPARED BY FAE
Please return 1 copy for your confirmation	
with your signature and comments.	

Note: 1. Please contact InfoVision Company before designing your product based on this product.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein. FQ-7-30-0-009-03

Document Title	M121GNX2 R1 P	M121GNX2 R1 Product Information			2/31
Document No.		Issue date	2015/01/30	Revision	00

Revision	Date	Page	Old Description	New Description	Remark
00	2015/01/30	All		First issue.	

Document Title	M121GNX2 R1 P	M121GNX2 R1 Product Information			3/31
Document No.		Issue date	2015/01/30	Revision	00

Contents

1.0	GENERAL DESCRIPTIONS	4
2.0	ABSOLUTE MAXIMUM RATINGS	e
3.0	PIXEL FORMAT IMAGE	7
4.0	OPTICAL CHARACTERISTICS	8
5.0	BACKLIGHT CHARACTERISTICS	12
6.0	ELECTRICAL CHARACTERISTICS	14
7.0	INTERFACE TIMINGS	20
8.0	POWER CONSUMPTION	
9.0	POWER ON/OFF SEQUENCE	
10.0	MECHANICAL CHARACTERISTICS	24
11.0	PACKAGE SPECIFICATION	27
12.0	RELIABILITY CONDITIONS	
13.0	LOT MARK	
14.0	GENERAL PRECAUTION	30

Document Title	M121GNX2 R1 Product Information			Page No.	4/31
Document No.		Issue date	2015/01/30	Revision	00

1.0 General Descriptions

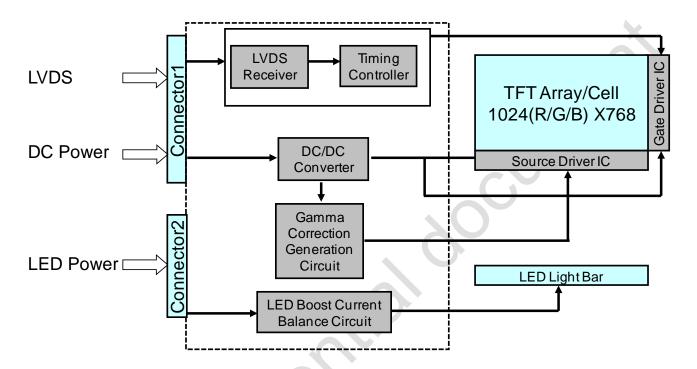
1.1 Introduction

The M121GNX2 R1 is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. It is composed of a TFT LCD panel, a backlight system, column driver and row driver circuit. This TFT LCD has a 12.1-inch diagonally measured active display area with XGA resolution (1024 horizontal by 768 vertical) pixels arrays.

1.2 Features

- 12.1" TFT LCD Panel
- LED Backlight System
- Supported XGA 1024x768 pixels resolution
- Compatible with RoHS standard

1.3 Product Summary


Items	Specifications	Unit
Screen Diagonal	12.1	Inch
Active Area	245.76 (H) x184.32 (V)	mm
Pixels H x V	1024(RGB) x768	-
Pixel Pitch	0.24(H)×0.24 (V)	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally White	-
White Luminance	350 (TYP)	cd /m ²
Contrast Ratio	800 (TYP)	-
Response Time	16 (TYP)	msec
Input Voltage	3.3	V
Power Consumption	6.925 (Max)	W
Weight	545 (Max)	g
Outline Dimension	279.0(H) ×209.0(V) ×9.0(D)	mm
Electrical Interface (Logic)	LVDS	-
Support Color	262K/16.7M	-
Optimum Viewing Direction	6 o'clock	-
Surface Treatment	Anti-glare & hardness 3H	-

Document Title	M121GNX2 R1 P	M121GNX2 R1 Product Information			5/31
Document No.		Issue date	2015/01/30	Revision	00

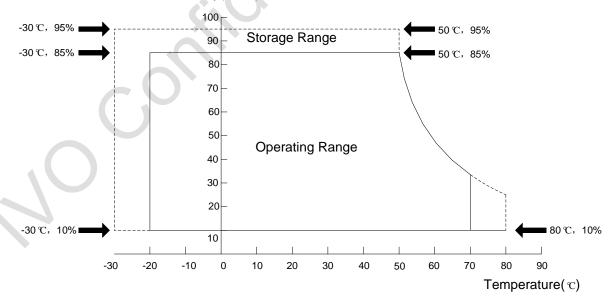
1.4 Functional Block Diagram

Figure 1 shows the functional block diagram of the LCD module.

Figure 1 Block Diagram

Document Title	M121GNX2 R1 P	M121GNX2 R1 Product Information			6/31
Document No.		Issue date	2015/01/30	Revision	00

2.0 Absolute Maximum Ratings

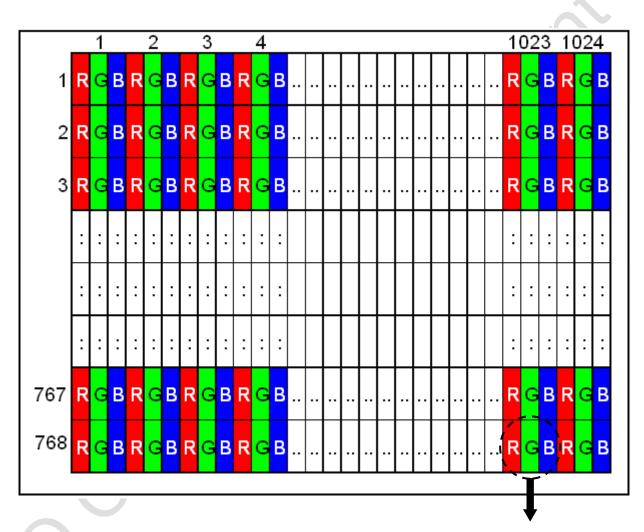

Table 1 Absolute Ratings of Environment

Item	Symbol	Min.	Max.	Unit	Conditions
Supply Voltage	V_{DD}	-0.5	5	V	(1)
Operating Temperature	Тор	-20	70	$^{\circ}\!\mathbb{C}$	(1) (2) (3) (4)
Operating Humidity	Нор	10	85	%RH	()
Storage Temperature	Тѕт	-30	80	$^{\circ}$	-
Storage Humidity	Нѕт	10	95	%RH	-

- Note (1): Humidity: 85%RH Max. (T<=40°C) Note static electricity.

 Maximum wet bulb temperature at 39°C or less. (T>40°C) No condensation.
- Note (2): There is a possibility of causing deterioration in the irregularity and others of the screen and the display fineness though the liquid crystal module doesn't arrive at destruction when using it at 80∼85°C or -20°C.
- Note (3): There is a possibility of causing the fineness deterioration by the prolonged use in the (high temperature) humidity environment (60% or more).
- Note (4): In the operating temperature item, the low temperature side is the ambient temperature regulations. The high temperature side is the panel surface temperature regulations.
- Note (5): Storage Range&Operating Range Picture:

Relative Humidity(%RH)



Document Title	M121GNX2 R1 P	M121GNX2 R1 Product Information			7/31
Document No.		Issue date	2015/01/30	Revision	00

3.0 Pixel Format Image

Figure 1 shows the relationship of the input signals and LCD pixel format image.

Figure 2 Pixel Format

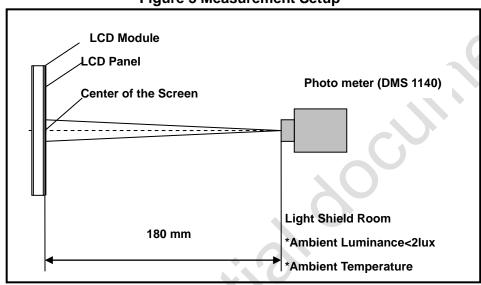
R Dot +G Dot +B Dot=1 Pixel

Document Title	M121GNX2 R1 Product Information			Page No.	8/31
Document No.		Issue date	2015/01/30	Revision	00

4.0 Optical Characteristics

The optical characteristics are measured under stable conditions as following notes

Table 2 Optical Characteristics

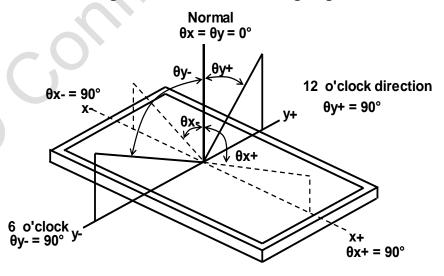

Item	Conditio	ns	Min.	Тур.	Max.	Unit	Note	
	Horizontal	θ ×+	70	80	-			
Viewing Angle	Honzontai	θ _{x-}	70	80	-	dograa	(4) (0) (2)	
(CR>10)	Vertical	θ _{y+}	70	80	-	degree	(1),(2),(3)	
	Vertical	θ _{y-}	70	80	-			
Contrast Ratio	Center		720	800	-	-	(1),(2),(4)	
	Rising (90%→1	0%)	-	4	5.2		•	
Response Time	Falling (10%→9	00%)	-	12	15.6	ms	(1),(2),(5)	
	Rising + Falling		-	16	20.8			
	White x		0.255	0.305	0.355	-		
	White y		0.275	0.325	0.375	-		
	Red x		0.614	0.644	0.674	-		
Color Chromaticity	Red y		0.314	0.344	0.374	-		
(CIE1931)	Green x		0.280	0.310	0.340	-	(1),(2)	
	Green y		0.604	0.634	0.664	-		
	Blue x		0.122	0.152	0.182	-		
	Blue y	YK	0.051	0.081	0.111	-		
NTSC		-	72	-	-			
White Luminance	5 Points Averag	е	315	350	-	cd/m^2	(1),(2),(6)	
Luminance Uniformity	9 Points		75	80	-	%	(1),(2),(7)	

Document Title	M121GNX2 R1 P	21GNX2 R1 Product Information		Page No.	9/31
Document No.		Issue date	2015/01/30	Revision	00

Note (1) Measurement Setup:

The LCD module should be stabilized at given temperature(25°C) for 15 minutes to Avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

Figure 3 Measurement Setup


Note (2) The LED input parameter setting as: I_LED: 500mA

V_LED: 12V

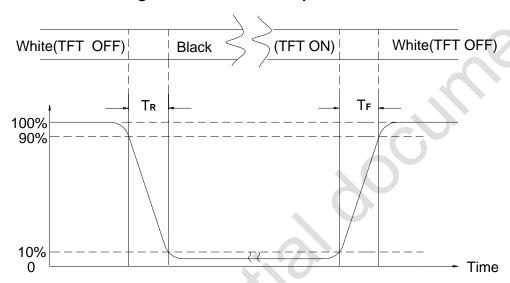
PWM_LED: Duty 100%

Note (3) Definition of Viewing Angle

Figure 5 Definition of Viewing Angle

Note (4) Definition Of Contrast Ratio (CR)

Document Title	M121GNX2 R1 P	121GNX2 R1 Product Information		Page No.	10/31
Document No.		Issue date	2015/01/30	Revision	00

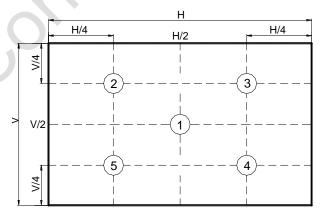

The contrast ratio can be calculated by the following expression

Contrast Ratio (CR) = L255/L0

L255: Luminance of gray level L255, L0: Luminance of gray level 0

Note (5) Definition Of Response Time (T_R, T_F)

Figure 4 Definition of Response Time

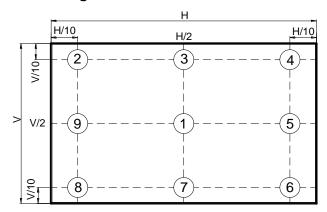

Note (6) Definition Of Luminance White

Measure the luminance of gray level L255 at center point (Ref.: Active Area)

Display Luminance= (L1+L2+L3+L4+L5) /5

H—Active area length, V—Active area width, L—Luminance

Figure 5 Measurement Locations Of 5 Points


Note (7) Definition Of Luminance Uniformity (Ref.: Active Area)

Measure the luminance of gray level 255 at 9 points.

Document Title	M121GNX2 R1 Product Information				11/31
Document No.		Issue date	2015/01/30	Revision	00

UNF(9pts) =
$$\frac{\text{Min}(L1, L2, \cdots L9)}{\text{Max}(L1, L2, \cdots L9)}$$

Figure 6 Measurement Locations of 9 Points

Document Title	M121GNX2 R1 Product Information			Page No.	12/31
Document No.		Issue date	2015/01/30	Revision	00

5.0 Backlight Characteristics

5.1 Parameter Guideline Of LED Backlight

Table 3 Parameter Guideline for LED Backlight

Item	Symb	ol	Min.	Тур.	Max.	Units	Note
LED Input Voltage	V_{LED}		10.8	12	12.6	V	(2)
LED Power Consumption	P_LED		-	-	6.1	W	(2)
LED Forward Voltage	V _F		2.8	3.3	3.6	V	
LED Forward Current	I _F		-	60	-	mA	
DWM Signal Voltage	W	High	4.5	5	5.5	V	
PWM Signal Voltage	V_{PWM_EN}	Low	0	-	0.5	V	(2)
LED Enable Voltage	V _{LED_EN}	High	2.0	5	5.5	V	
LED Enable Voltage		Low	-	0	0.5		
Input PWM Frequency	FPWM		200	7/	20,000	Hz	
LED Life Time	LT		30,000	Ç	-	Hours	(1)(2)
Duty Ratio	PWM		5	-	100	%	(2)

Note (1) The LED life time define as the estimated time to 50% degradation of initial luminous.

Note (2) Operating temperature 25 °C, humidity 55%RH.

Document Title	M121GNX2 R1 Product Information			Page No.	13/31
Document No.		Issue date	2015/01/30	Revision	00

Table 4 Connector Name / Designation

Item	Description	
Input LED	PCB Jack Connector model: MSB24038P5A	
	Manufactured by STM	
	PIN IDE Connector model: P24038P5	

Table 5 Input LED Signal Pin Assignment

Pin#	Function
1	VCC(12V input)
2	GND
3	On/Off(5V-ON,0V-OFF)
4	Dimming(PWM)
5	NC

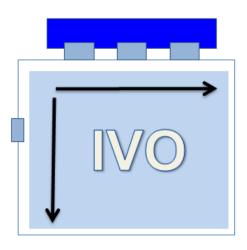
Document Title	M121GNX2 R1 Product Information			Page No.	14/31
Document No.		Issue date	2015/01/30	Revision	00

6.0 Electrical Characteristics

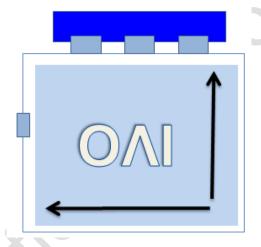
6.1 Interface Connector

Table 7 Connector Name / Designation

Item	Description
FPC Down Connector	PCB Jack Connector recommended model: MSB240420HE
(20pin pitch=1.25mm)	Manufactured by STM
	PIN IDE Connector model: P240420H


Table 8 Signal Pin Assignment

Pin #	Symbol	Description
1	VDD	Power Supply, 3.3V (typical)
2	VDD	Power Supply, 3.3V (typical)
3	VSS	Ground
4	REV	Reverse Scan selection
4	NE V	{High:2.5(min), 3.3(typ),3.6(max); Low: 0.5(max)}
5	Rin1-	-LVDS differential data input (R0-R5,G0)
6	Rin1+	+LVDS differential data input (R0-R5,G0)
7	VSS	Ground
8	Rin2-	-LVDS differential data input (G1-G5,B0-B1)
9	Rin2+	+LVDS differential data input (G1-G5,B0-B1)
10	VSS	Ground
11	Rin3-	-LVDS differential data input (B2-B5,HS,VS,DE)
12	Rin3+	+LVDS differential data input (B2-B5,HS,VS,DE)
13	VSS	Ground
14	CIkIN-	-LVDS differential clock input
15	CIkIN+	+LVDS differential clock input
16	GND	Ground
17	Rin4-	-LVDS differential data input (R6-R7,G6-G7,B6-B7)
18	Rin4+	+VDS differential data input (R6-R7,G6-G7,B6-B7)
19	SEL68	6/8 bits LVDS data input selection(H:8bit L/NC:6bit)
20	Bist	Internal use


Note(1): All input signals shall be low or Hi-resistance state when VDD is off.

Document Title	M121GNX2 R1 Product Information				15/31
Document No.		Issue date	2015/01/30	Revision	00

Note (2) REV = LOW/NC

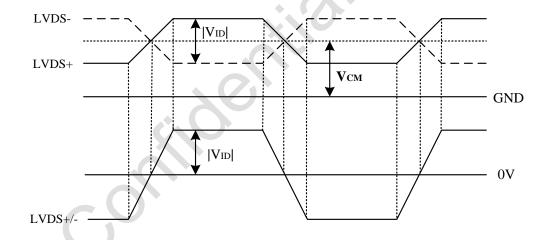
Note (3) REV = High

Document Title	M121GNX2 R1 P	121GNX2 R1 Product Information			16/31
Document No.		Issue date	2015/01/30	Revision	00

6.2 LVDS Receiver

6.2.1 Signal Electrical Characteristics For LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.


Table 6 LVDS Receiver Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Threshold	Vth	-	•	+100	mV	V _{CM} =+1.2V
Differential Input Low Threshold	VtI	-100	-	-	mV	V _{CM} =+1.2V
Magnitude Differential Input Voltage	V _{ID}	100	1	600	mV	-
Common Mode Voltage	V_{CM}	VID /2+0.6	1.2	1.8- VID /2	٧	-
Common Mode Voltage Offset	ΔV_{CM}	-	-	50	mV	V _{CM} =+1.2V

Note: (1) Input signals shall be low or Hi- resistance state when VDD is off.

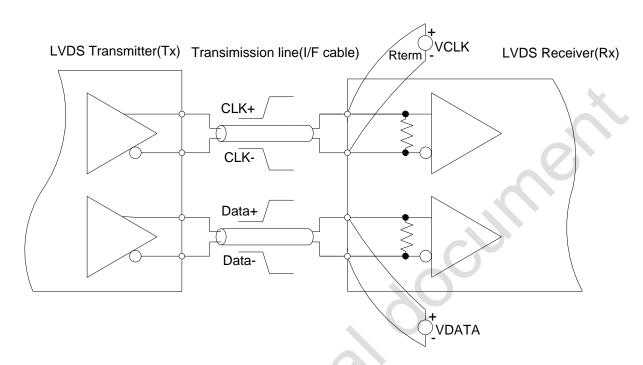

(2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

Figure 9 Voltage Definitions

Document Title	M121GNX2 R1 P	21GNX2 R1 Product Information			17/31
Document No.		Issue date	2015/01/30	Revision	00

Figure 10 Measurement System

Document Title	M121GNX2 R1 Product Information				18/31
Document No.		Issue date	2015/01/30	Revision	00

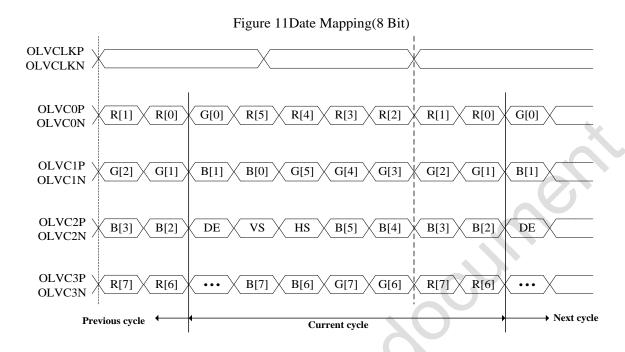
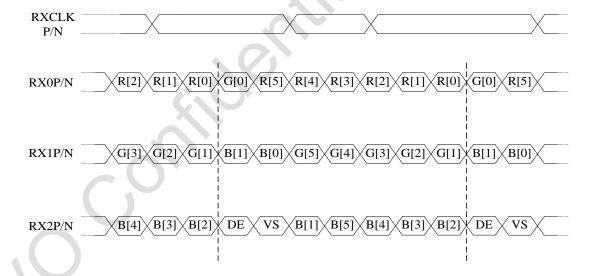



Figure 12 Data Mapping(6 Bit)

Document Title	M121GNX2 R1 P	21GNX2 R1 Product Information			19/31
Document No.		Issue date	2015/01/30	Revision	00

6.2.2 LVDS Receiver Internal Circuit

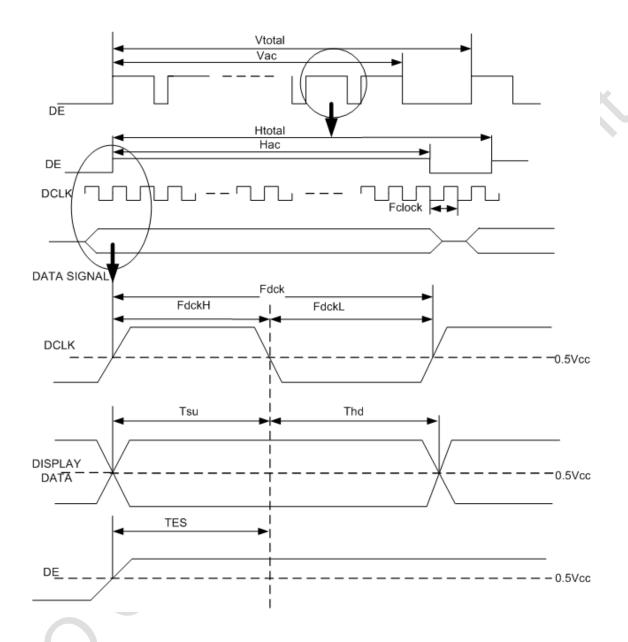
Figure 13 LVDS Receiver Internal **Circuit** shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link.

RX CLK+_ **PLL** DTUCK RX CLK-Sampling clocks RX_1+ R0-R5,G0 RX 1-RX_2+ ► G1-G5,B0-B1 RX_2-Serial to Parallel converter RX_3+ ► B2-B5,HS,VS,DE ► R6-R7,G6-G7,B6-B7

Figure 13 LVDS Receiver Internal Circuit

Document Title	M121GNX2 R1 P	21GNX2 R1 Product Information			20/31
Document No.		Issue date	2015/01/30	Revision	00

7.0 Interface Timings


Table 7 Interface Timings

Parameter	rameter Symbol		Min.	Тур.	Max.
LVDS Clock Frequency	Fclk	MHz	50	65	80
H Total Time	HT	Clocks	1100	1344	2047
H Active Time	HA	Clocks	1024	1024	1024
H Blanking Time	HBL	Clocks	76	320	1023
V Total Time	VT	Lines	776	806	1023
V Active Time	VA	Lines	768	768	768
V Blanking Time	VBL	Lines	8	38	255
Frame Rate	Vsync	Hz	55	60	65

Note: H Blanking Time and V Blanking Time can not be changed at every frame.

Document Title	M121GNX2 R1 Product Information			Page No.	21/31
Document No.		Issue date	2015/01/30	Revision	00

Figure 14 Timing Characteristics

Document Title	M121GNX2 R1 Product Information			Page No.	22/31
Document No.		Issue date	2015/01/30	Revision	00

8.0 Power Consumption

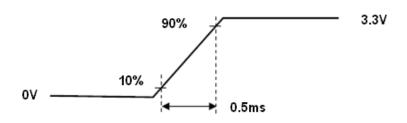
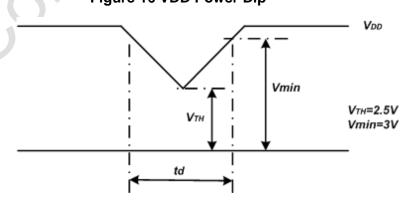

Input power voltage specifications are as follows.

Table 8 Power Voltage

Item		Symbol	Min.	Тур.	Max.	Units	Note
LCD Drive Volt	LCD Drive Voltage (Logic)		3.0	3.3	3.6	V	(2), (4)
VDD Current	Black Pattern	IDD	-	-	250	mA	(2) (4) (6)
VDD Power Consumption	Black Pattern	PDD	-	-	0.825	W	(3),(4),(6)
Rush Current		Irush	-	-	3	Α	(1),(4),(5)
Allowable Logic Drive Ripple Vo		VDDrp	-	-	200	mV	(4)

Note (1) Measure Condition


Figure 15 VDD Rising Time

Note (2) VDD Power Dip Condition

If VTH<VDD≤Vmin, then td≤10ms; When the voltage returns to normal our panel must revive automatically.

Figure 16 VDD Power Dip

Note (3) Frame Rate=60Hz, VDD=3.3V,DC Current.

Note (4) Operating temperature 25°C, humidity 55%RH.

Document Title	M121GNX2 R1 P	21GNX2 R1 Product Information				
Document No.		Issue date	2015/01/30	Revision	00	

9.0 Power ON/OFF Sequence

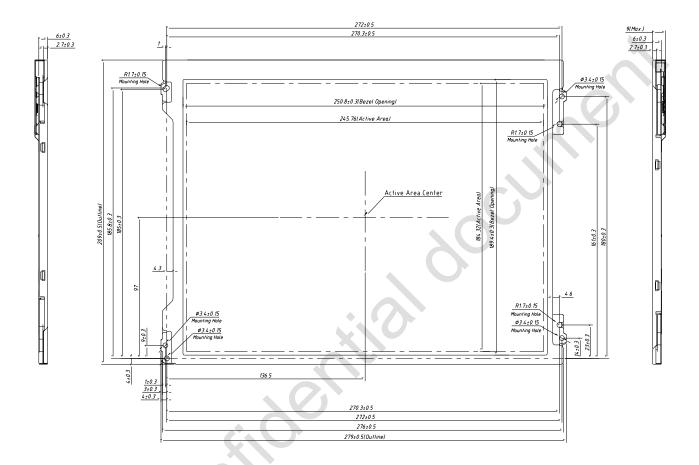
Power on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-resistance state or low level when VDD is off.

Figure 17 Power Sequence

Table 9 Power Sequencing Requirements

	111111111111111111111111111111111111111	ooquonomg Roqui		
Parameter	Unit	min	typ	max
T1	ms	0.5	-	10
T2	ms	30	40	50
Т3	ms	200	-	-
T4	ms	10	-	-
T5	ms	10	-	-
T6	ms	0	-	-
T7	ms	10	-	-
Т8	ms	100	-	-
T9	ms	0	16	50
T10	ms	-	-	10
T11	ms	1000	-	-

Note (1) Power On Sequence: VCC-> AVDD -> VGL -> VGH -> Data -> B/L


(2) Power Off Sequence: B/L-> Data -> VGH -> VGL -> AVDD -> VCC

Document Title	M121GNX2 R1	Product Informat	Page No.	24/31	
Document No.		Issue date	2015/01/30	Revision	00

10.0 Mechanical Characteristics

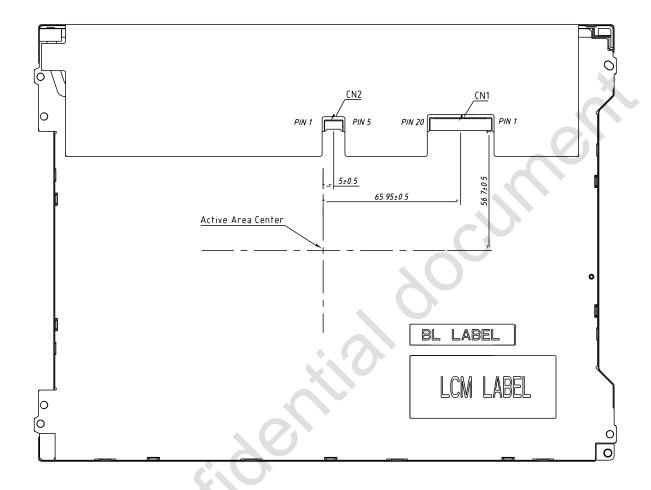
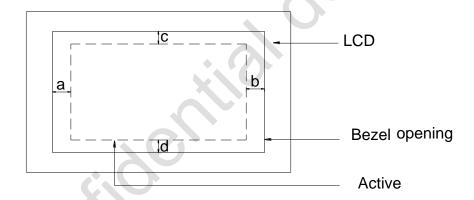

10.1 Outline Drawing

Figure 18 Outline Drawing (Front Side)

Document Title	M121GNX2 R1 P	21GNX2 R1 Product Information				
Document No.		Issue date	2015/01/30	Revision	00	

Figure 19 Outline Drawing (Back Side)


Document Title	M121GNX2 R1 P	M121GNX2 R1 Product Information					
Document No.		Issue date	2015/01/30	Revision	00		

10.2 Dimension Specifications

Table 10 Module Dimension Specifications

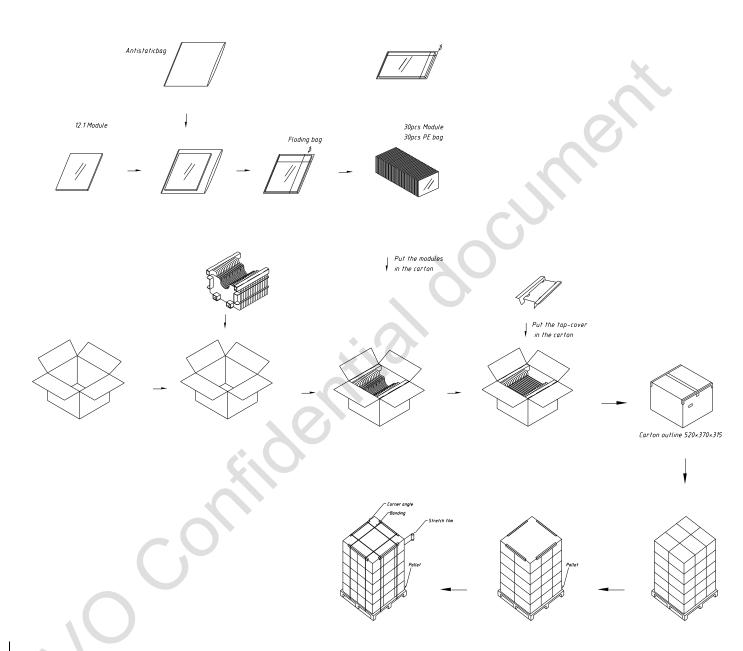

Item	Min.	Тур.	Max.	Units	
Width	278.5	279.0	279.5	mm	
Height	208.5	209.0	209.5	mm	
Thickness	5.7(without	6(without	6.3(without	mm	
	PCBA)	PCBA)	PCBA)	mm	
Weight	-	518.7	545	g	
BM: a-b & c-d		≤1.0		mm	

Figure 20 BM Area

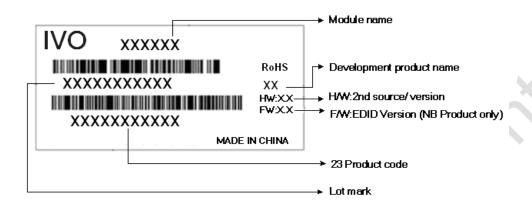
Document Title	M121GNX2 R1 P	21GNX2 R1 Product Information			
Document No.		Issue date	2015/01/30	Revision	00

11.0 Package Specification

Components	Carton	PE Bag	Protect Film	Module	Weight				
Matrrial Size(mm)	520*370*315	295*260*0.06	254*194*0.08	279*209*9	545g/pcs	19kg/carton	590kg/ Pallet		
Amount	1pcs/carton	30pcs/carton	30pcs/carton	30pcs/carton	Module(max)	30pcs Module (Include Packing)	900pcs Module (Include Pacing)		

Document Title	M121GNX2 R1 P	21GNX2 R1 Product Information				
Document No.		Issue date	2015/01/30	Revision	00	

12.0 Reliability Conditions


Item	Package	Test Conditions	Note	
High Temperature Operation Test	Module	70°C, 300hrs	1,2,3,4,5,6	
Low Temperature Operating Test	Module	-20°C, 300hrs	1,2,3,4,5,6	
High Temperature Storage Test	Module	80°C, 300hrs	1,3,4,5,6	
Low Temperature Storage Test	Module	-30°C, 300hrs	1,3,4,5,6	
High Temp High Humidity	Module	50℃, 85%, 300hrs	1 2 2 4 5 6	
Operating Test	iviodule	50 €, 65%, 500HIS	1,2,3,4,5,6	

Note:

- 1. There is no function defect and occurrence of any new defective shall not be allowed.
- 2. In Operating test, the B/L voltage and current must be in spec.
- 3. All the judgments are under normal temperature and the sample need to be static more than 2 hours in the normal temperature before judge.
- 4. During measurement, the condensation water or remains shall not be allowed.
- 5. The minimum sample quantity of test is 3pcs.
- 6. There is no display function fail issue occurred, all the cosmetic specification is judged before the reliability stress.

Document Title	M121GNX2 R1 P	21GNX2 R1 Product Information				
Document No.		Issue date	2015/01/30	Revision	00	

13.0 Lot Mark

13.1 Lot Mark

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

code 1,2,4,5,6,7,8,9,10,11,16: IVO internal flow control code.

code 3: Production location.

code 12: Production year.

code 13: Production month.

code 14,15: Production date.

code 17,18,19,20: Serial number.

Note (1) Production Year

Year	2,006	2,007	2,008	2,009	2,010	2,011	2,012	2,013	2,014	2,015
Mark	6	7	8	9	Α	В	С	D	Е	F

Note (2) Production Month

Month	Jan.	Feb.	Mar.	Apr.	Мау.	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

13.2 23 Product Barcode

1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
---	---	-----	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

code 1,2: Manufacture District.

code 3,4,5,6,7: IVO internal module name.

code 8,9,10,13,16: IVO internal flow control code.

code 11,12: Cell location Suzhou defined as "SZ".

code 14,15: Module line kunshan defined as" KS".

code 17,18,19: Year, Month, Day Refer to Note(1) and Note(2) of Lot Mark.

code 20~23 : Serial Number.

Document Title	M121GNX2 R1 P	M121GNX2 R1 Product Information					
Document No.		Issue date	2015/01/30	Revision	00		

14.0 General Precaution

14.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

14.2 Handling Precaution

- (1) Please mount LCD module by using mounting holes arranged in four corners tightly.
- (2) Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. IVO does not warrant the module, if customers disassemble or modify the module.
- (3) If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid Crystal, and do not contact liquid crystal with skin. If liquid crystal contacts mouth or eyes, rinse out with water immediately. If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and Rinse thoroughly with water.
- (4) Disconnect power supply before handling LCD module
- (5) Refrain from strong mechanical shock and /or any force to the module.
- (6) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature; etc otherwise LCD module may be damaged. It's recommended employing protection circuit for power supply.
- (7) Do not touch, push or rub the polarizer with anything harder than HB pencil lead. Use fingerstalls of soft gloves in order to keep clean display quality, when Persons handle the LCD module for incoming inspection or assembly.
- (8) When the surface is dusty, please wipe gently with absorbent cotton or other soft Material. When cleaning the adhesives, please use absorbent cotton wetted with a little Petroleum benzene or other adequate solvent.
- (9) Wipe off saliva or water drops as soon as possible. If saliva or water drops Contact with polarizer for a long time, they may causes deformation or color Fading.
- (10) Protection film must remove very slowly from the surface of LCD module to Prevent from electrostatic occurrence.
- (11) Because LCD module uses CMOS-IC on circuit board and TFT-LCD panel, it is Very weak to electrostatic discharge, Please be careful with electrostatic Discharge .Persons who handle the module should be grounded through adequate methods.
- (12) Do not adjust the variable resistor located on the module.

14.3 Storage Precaution

- (1) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (2) The module shall not be exposed under strong light such as direct sunlight. Otherwise, Display characteristics may be changed.
- (3) The module should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light in storage.

14.4 Operation Precaution

- (1) Do not connect or disconnect the module in the "Power On" condition.
- (2) Power supply should always be turned on/off by "Power on/off sequence"
- (3) Module has high frequency circuits. Sufficient suppression to the electromagnetic

Document Title	M121GNX2 R1 P	M121GNX2 R1 Product Information			
Document No.		Issue date	2015/01/30	Revision	00

interference should be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.

(4) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.

14.5 Others

- (1) Ultra-violet ray filter is necessary for outdoor operation.
- (2) Avoid condensation of water which may result in improper operation or disconnection of electrode.
- (3) If the module keeps displaying the same pattern for a long period of time, the image may be "sticked" to the screen.
- (4) This module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.

14.6 Disposal

When disposing LCD module, obey the local environmental regulations.